万博max手机登录注册 【2021版】

  • 学校首页
  • 办公信息
  • 邮箱
  • 网站后台
  • English

学术报告《Combinatorial list-decoding of Reed-Solomon codes》的通知

发布日期:2020/05/21 点击量:

题目:Combinatorial list-decoding of Reed-Solomon codes

主讲人:上官冲,以色列特拉维夫大学电子工程系博士后

时间:2020年6月5日15:00-16:00

地址:加入ZOOM会议 https://zoom.com.cn/j/2936654514

摘要:List-decoding of Reed-Solomon (RS) codes beyond the so called Johnson radius has been one of the main open questions in coding theory since the work of Guruswami and Sudan. It is now known by the work of Rudra and Wootters, using techniques from high dimensional probability, that over large enough alphabets there exist RS codes that are list-decodable beyond this radius.

In this talk, we take a more combinatorial approach which allows us to determine the precise relation (up to the exact constant) between the decoding radius and the list size. We prove a generalized Singleton bound for a given list size, and show that the bound is tight for list size $L=2$. As a by-product we show that most RS codes with a rate of at least $1/4$ are list-decodable beyond the Johnson radius. We also give the first explicit construction of such RS codes.

The main tool used in the proof is the polynomial method that captures a new type of linear dependency between codewords of a code that are contained in a small Hamming ball.

主讲人简介:上官冲,以色列特拉维夫大学电子工程系博士后,2017年博士毕业于浙江大学,主要从事组合数学与信息科学的交叉研究,在相关领域的国际主流期刊发表论文十余篇。

邀请人:胡思煌

联系我们

地址:山东省青岛市即墨区滨海路72号山东大学青岛校区淦昌苑D座邮编:266237

邮箱:cst@sdu.edu.cn电话:(86)-532-58638601传真:(86)-532-58638633

版权所有 Copyright © 山东大学万博max手机登录注册

Baidu
sogou